На правах рукописи

Кульбакин Игорь Валерьевич

КИСЛОРОДОПРОНИЦАЕМЫЕ МЕМБРАННЫЕ МАТЕРИАЛЫ С ЖИДКОКАНАЛЬНОЙ ЗЕРНОГРАНИЧНОЙ СТРУКТУРОЙ

Специальность 02.00.01 – Неорганическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Москва – 2013

Работа выполнена в лаборатории функциональной керамики №31 Федерального государственного бюджетного учреждения науки Институт металлургии и материаловедения им. А.А. Байкова РАН

Научный руководитель:

Белоусов Валерий Васильевич

доктор физико-математических наук

Официальные оппоненты:

Кецко Валерий Александрович

доктор химических наук, Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова РАН, ведущий научный сотрудник лаборатории энергоёмких веществ и материалов

Проценко Павел Валерьевич

кандидат химических наук, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет имени М.В.Ломоносова», ведущий научный сотрудник лаборатории физико-химической механики твёрдых тел кафедры коллоидной химии химического факультета МГУ

<u>Ведущая организация</u>: Федеральное государственное бюджетное учреждение науки Институт проблем химической физики РАН

Защита состоится «12» декабря 2013 года в 10⁰⁰ на заседании Диссертационного совета Д 002.060.04 по химическим и техническим наукам при Федеральном государственном бюджетном учреждении науки Институт металлургии и материаловедения им А.А. Байкова РАН по адресу: 119991, г. Москва, ул. Ленинский проспект, д. 49, Большой конференц-зал.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Институт металлургии и материаловедения им. А.А. Байкова РАН. С текстом автореферата можно ознакомиться на сайте ИМЕТ РАН ultra.imet.ac.ru и на сайте BAK vak.ed.gov.ru.

Автореферат разослан «7» ноября 2013 года

Ученый секретарь Диссертационного Совета Д 002.060.04, кандидат геолого-минералогических наук

Ивичева С.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Создание новых оксидных материалов с высокой смешанной ионноэлектронной проводимостью является актуальной задачей неорганической химии и материаловедения. Интерес к изучению таких материалов прежде всего обусловлен их практическим применением в качестве электродов в твердооксидных топливных элементах, ионно-транспортных мембран (ИТМ) в сепараторах особо чистого кислорода и каталитических мембранных реакторах.

За последние десятилетия получен ряд материалов со смешанной ионноэлектронной проводимостью – это соединения со структурой перовскита, флюорита, семейство фаз BIMEVOX и керметы «твёрдый электролит благородный металл». В некоторых из них (ферриты, кобальтиты и керметы на основе стабилизированного оксида висмута) достигнут высокий уровень смешанной ионно-электронной проводимости. Однако применение этих материалов в качестве ИТМ затруднено по ряду существенных причин, таких как низкая термодинамическая и механическая устойчивость перовскитов; относительно высокая стоимость керметов и др.

В последнее время в качестве альтернативы традиционно используемым в ИТМ хрупким керамическим материалам предложены пластичные композиты с жидкоканальной зернограничной структурой (ЖЗГС). Эти композиты состоят из электронпроводящих твёрдых зёрен и межзёренных жидких каналов со смешанной ионно-электронной проводимостью. Наличие межзёренных жидких проводимость обеспечивает композитам высокую ионную каналов И механическую пластичность. В настоящее время наиболее полно изучены транспортные свойства композитов BiVO₄ - V₂O₅ с ЖЗГС. Однако эти имеют низкий уровень смешанной ионно-электронной композиты проводимости и узкий рабочий интервал температур (640 - 670 °C), что затрудняет их применение в качестве ИТМ.

Данная работа направлена на поиск и создание новых композитных материалов с ЖЗГС, обладающих высокой смешанной ионно-электронной

проводимостью в широком диапазоне температур, которые могут применяться в качестве ИТМ для выделения кислорода из воздуха.

<u>Цель работы:</u> разработка новых композитных материалов $ZrV_2O_7 - V_2O_5$, ZnO – Bi₂O₃, NiO – Bi₂O₃ и In₂O₃ – Bi₂O₃ с жидкоканальной зернограничной структурой, обладающих высокой селективной проницаемостью по кислороду для применения в качестве ионно-транспортных мембран.

Для достижения указанной цели в работе решались следующие задачи:

- синтез и характеризация композитов ZrV₂O₇ 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС; ZnO 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС; NiO 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС;
- измерение электропроводности, чисел переноса ионов кислорода и проницаемости по кислороду композитов ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС; ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС; NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС в зависимости от температуры, парциального давления кислорода и объемной доли жидкой фазы;
- установление кинетических закономерностей процесса переноса кислорода в этих композитах;
- выявление взаимосвязи состав микроструктура транспортные свойства композитов с ЖЗГС.

Научная новизна:

• получены новые композиты $ZrV_2O_7 - 16$, 20, 24, 28 мас.% V_2O_5 с ЖЗГС; ZnO – 15, 20, 25, 30 мас.% Bi_2O_3 с ЖЗГС; NiO – 30, 36, 42, 48 мас.% Bi_2O_3 с ЖЗГС и $In_2O_3 - 30$, 36, 42, 48 мас.% Bi_2O_3 с ЖЗГС, обладающие высокой селективной проницаемостью по кислороду;

• выявлена взаимосвязь состав – микроструктура – транспортные свойства этих композитов. Показано, что проницаемость по кислороду возрастает с ростом объемной доли жидкой фазы;

• установлен характер изменения электропроводности, чисел переноса и потока кислорода от температуры, парциального давления кислорода и объемной доли жидкой фазы в композитах;

• установлены кинетические закономерности процесса переноса кислорода в композитах с ЖЗГС. Показано, что процесс переноса кислорода (в исследованном интервале толщин 1,1 – 5,4 мм) осуществляется в диффузионном режиме. Сопряженная диффузия ионов кислорода и электронов контролирует скорость процесса.

Практическая значимость:

Композиты NiO – 48 мас.% Bi_2O_3 с ЖЗГС и $In_2O_3 - 48$ мас.% Bi_2O_3 с ЖЗГС имеют максимальный коэффициент проницаемости по кислороду (4,4·10⁻⁹ моль·см⁻¹·с⁻¹ и 1,1·10⁻⁸ моль·см⁻¹·с⁻¹ при 850 °C, соответственно) и поэтому могут быть использованы в качестве ионно-транспортных мембран в сепараторах особо чистого кислорода для химической, микроэлектронной и фармацевтической промышленности.

Полученные экспериментальные данные по транспортным свойствам композитов с ЖЗГС могут быть использованы при разработке теоретических моделей переноса кислорода в висмут- и ванадийсодержащих расплавах.

Положения, выносимые на защиту:

- установленные кинетические закономерности процесса переноса кислорода в композитах ZrV₂O₇ 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС; ZnO 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС; NiO 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС;
- полученные зависимости транспортных свойств этих композитов от температуры, парциального давления кислорода и объемной доли жидкой фазы;
- результаты измерения чисел переноса ионов кислорода, электропроводности и проницаемости по кислороду композитов ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС; ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с

ЖЗГС; NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС.

Апробация работы

работы Материалы диссертационной доложены следующих на Всероссийских и Международных конференциях: 7-я, 8-я, 9-я, 10-я Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физикохимия и технология неорганических материалов» (Москва, 2010, 2011, 2012, 2013), 10-я Международная конференция по катализу в мембранных реакторах (Санкт-Петербург, 2011), 10-й Международный симпозиум «Системы с быстрым ионным транспортом» (Черноголовка, 2012), 11-е Международное «Фундаментальные проблемы совещание ионики твердого тела» (Черноголовка, 2012), 7-я Всероссийская конференция молодых ученых, аспирантов И студентов c международным участием по химии И наноматериалам «Менделеев-2013» (Санкт-Петербург, 2013), Всероссийская молодежная научная конференция с международным участием «Инновации в (Москва, 2013), 16-я Российская материаловедении» конференция ПО физической химии и электрохимии расплавленных и твердых электролитов (Екатеринбург, 2013).

Настоящая работа выполнена при финансовой поддержке программы Президиума РАН № 8 «Разработка методов получения химических веществ и создание новых материалов» и РФФИ (гранты № 10-08-00586-а, № 11-03-12122-офи-м, № 12-08-00748-а, № 12-03-31194-мол_а).

Публикации по теме диссертации

Основные результаты работы опубликованы в 13 научных работах, среди которых 4 статьи в рецензируемых зарубежных и российских научных журналах из списка ВАК, а также 9 тезисов докладов Всероссийских и Международных конференций.

Структура и объем работы

Диссертация состоит из введения, трех глав (обзор литературы, синтез и методы исследования, результаты и их обсуждение), заключения, выводов,

списка литературы и приложения. Работа изложена на 111 страницах, включая 10 таблиц и 63 рисунка. Список цитируемой литературы содержит 176 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы, цель и задачи исследований, отражена научная новизна и практическая значимость работы.

В первой главе дана теория переноса кислорода через ИТМ, а также аналитический обзор литературы ПО известным на данный момент кислородопроницаемым неорганическим ионно-транспортным мембранным материалам (соединения со структурой перовскита, флюорита, пирохлора, браунмиллерита, фазы слоистой структурой co типа Ауривиллиуса, Раддлесдена-Поппера, керметы и композиты с ЖЗГС).

Рис. 1. Фазовые диаграммы состояния систем (a) $ZrO_2 - V_2O_5$, (б) $Bi_2O_3 - ZnO$, (в) $Bi_2O_3 - NiO$ и (г) $Bi_2O_3 - In_2O_3$.

Во второй главе описан синтез композитов $ZrV_2O_7 - 16$, 20, 24, 28 мас.% V_2O_5 с ЖЗГС; ZnO – 15, 20, 25, 30 мас.% Bi_2O_3 с ЖЗГС; NiO – 30, 36, 42, 48 мас.% Bi_2O_3 с ЖЗГС и $In_2O_3 - 30$, 36, 42, 48 мас.% Bi_2O_3 с ЖЗГС. ЖЗГС формировалась путем нагревания этих композитов в двухфазную область диаграммы состояния системы $ZrO_2 - V_2O_5$ (рис. 1 а), ZnO – Bi_2O_3 (рис. 1 б), NiO – Bi_2O_3 (рис. 1 в) или $In_2O_3 - Bi_2O_3$ (рис. 1 г), где твердый ZrV_2O_7 , ZnO, NiO или In_2O_3 находится в равновесии с расплавом (затемненные участки на диаграммах состояния). Объемная доля жидкой фазы варьировалась от 0,12 до 0,45.

В разделе 2.2. описаны методы решения поставленных в работе задач: РФА, СЭМ, ЭРМА, материалография, четырехзондовый метод измерения электропроводности, газовая хроматография и кулоновольюмометрия.

<u>В третьей главе</u> представлены экспериментальные результаты и их обсуждение. Раздел 3.1. содержит анализ фазового состава и микроструктуры полученных композитов. Разделы 3.2. – 3.4. содержат результаты исследования транспортных свойств (электропроводность, число переноса ионов кислорода и кислородная проницаемость) композитов $ZrV_2O_7 - 16$, 20, 24, 28 мас.% V_2O_5 с ЖЗГС; ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС; NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС.

Система $ZrV_2O_7 - V_2O_5$. По данным РФА, выход фазы пированадата циркония (в реакции твердофазного систеза $ZrO_2 + V_2O_5$) составил более 95

Рис. 2. Рентгенограмма продуктов взаимодействия твердофазной реакции $ZrO_2 + V_2O_5$, проведенной при 660 °C в течение 360 часов на воздухе (с тремя промежуточными помолами).

мас.% (рис. 2). На рентгенограмме также присутствовали незначительные следы исходных реагентов $ZrO_2 u V_2O_5$ (3 и 2 мас.%, соответственно). Соединение ZrV_2O_7 кристаллизуется в кубической сингонии с параметром решетки а = 8,765 Å (Ра $\overline{3}$). На рис. 3 представлены рентгенограммы (а)

исходного керамического композита $ZrV_2O_7 - 20$ мас.% V_2O_5 , спечённого при 650 °C и (б) композита $ZrV_2O_7 - 20$ мас.% V_2O_5 с ЖЗГС после охлаждения от

Рис. 3. Рентгенограммы (а) исходного керамического композита $ZrV_2O_7 - 20$ мас.% V_2O_5 , спечённого при 650 °С и (б) композита $ZrV_2O_7 - 20$ мас.% V_2O_5 с ЖЗГС, охлажденного от 740 °С.

Рис. 4. Микроструктура (а) композита ZrV₂O₇ – 20 мас.% V₂O₅ с ЖЗГС, охлажденного от 740 °С, и (б) данные локального химического анализа для этого же композита.

Рис. 5. Температурные зависимости электропроводности (σ) композитов ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅, фаз ZrV₂O₇ и V₂O₅.

740 °С. Фазовый состав композитов (а) и (б) при комнатной температуре практически не отличается.

На рис. 4 а представлена микроструктура композита ZrV_2O_7 – 20 мас. % V_2O_5 с ЖЗГС, охлажденного от 740 °С, где темная структурная составляющая – смесь фаз V_2O_5 + ZrV_2O_7 , серая – ZrV_2O_7 , а светлая – непрореагировавший ZrO_2 , что согласуется с данными РФА (рис. 3 б) и

> локального химического анализа (рис. 4 б). Рис. 4 подтверждает существование ЖЗГС при 740 °С, т.к. твердые зерна ZrV₂O₇ были смочены расплавом (темная структурная составляющая).

Температурные зависимости электропроводности композитов ZrV₂O₇-16, 20, 24, 28 мас.% V₂O₅ представлены на рис. 5 (для сравнения приведены электропроводности чистых V_2O_5 И ZrV₂O₇). Электропроводность композитов возрастает с увеличением содержания V_2O_5 . В интервале температур 600-650 °C электропроводности (2-5) кривых на наблюдается участок с отрицательным температурным коэффициентом $d\sigma/dT$,

что может быть связано с процессами, происходящими в предплавильной области соединений - перестроением каркасных полиэдров в структуре ZrV_2O_7 и взаимодействием с полиэдрами, образующими структуру V_2O_5 . Для ZrV_2O_7 также наблюдается изгиб на кривой электропроводности, связанный, повидимому, с присутствием примеси непрореагировавших ZrO_2 и V_2O_5 . В интервале 650-740 °C на кривых 2-5 наблюдается увеличение электропроводности, которое обусловлено формированием в композитах ЖЗГС. Величина кажущейся энергии активации составляет ~ 0,78 эВ в интервале 670-740 °C.

Рис. 6. Зависимости числа переноса ионов кислорода (t_i) в композитах ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС от (а) температуры и (б) объемной доли жидкой фазы (η_{w}) .

На рис. 6 а представлена температурная зависимость числа переноса (t_i) ионов кислорода для композитов ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС. С повышением температуры от 680 до 740 °С число переноса ионов кислорода уменьшается от 0,6 до 0,4. Это свидетельствует о том, что с повышением температуры вклад ионной проводимости по кислороду в общую электропроводность композитов уменьшается.

Измерения числа переноса ионов кислорода в композитах $ZrV_2O_7 - 16$, 20, 24, 28 мас.% V_2O_5 кулоновольюмометрическим методом ниже и выше температуры солидуса (рис. 1 а) показали, что в твердом состоянии (ниже температуры плавления эвтектики 670 °C) композиты не проводят ионы кислорода. Ионная проводимость по кислороду обнаружена только в композитах

ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС (выше температуры плавления эвтектики 670 °C). Следовательно, жидкие каналы проводят ионы кислорода.

Рис. 7. Зависимости потока кислорода (j_{O_2}) через композиты ZrV₂O₇ – 16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС (а) от разности парциальных давлений кислорода $(lg \frac{P'_{O_2}}{P''_{O_2}})$ при 700 °C (L = 2 мм) и (б) от объемной доли жидкой фазы в композитах ($\eta_{\mathcal{H}}$) при различных температурах ($lg \frac{P'_{O_2}}{P''_{O_2}} = 1,6$; L = 2 мм).

На рис. 7 представлены зависимости потока кислорода (j_{0_2}) через композиты ZrV₂O₇ –16, 20, 24, 28 мас.% V₂O₅ с ЖЗГС от разности парциальных давлений кислорода $(lg \frac{P'_{0_2}}{P''_{0_2}})$ при различных температурах, измеренные газохроматографическим методом. Поток кислорода возрастает с увеличением содержания V₂O₅ и ростом температуры. В соответствии с диаграммой состояния ZrV₂O₇ – V₂O₅ (рис. 1 а), с ростом концентрации V₂O₅ увеличивается объемная доля жидкой фазы $(\eta_{\mathcal{H}})$ в композитах и, соответственно, плотность межзеренных жидких каналов, которые являются путями для переноса ионов кислорода. При этом поток кислорода через композиты также возрастает с ростом объемной доли жидкой фазы (рис. 7 б).

На рис. 8 представлены зависимости потока кислорода через композиты $ZrV_2O_7 - 20$ мас.% V_2O_5 с ЖЗГС и $ZrV_2O_7 - 28$ мас.% V_2O_5 с ЖЗГС от их толщины *L* при различных температурах. Поток кислорода уменьшается с увеличением толщины композитов. В соответствии с уравнением Вагнера (1), линейный характер этих зависимостей свидетельствует о диффузионном контроле процесса переноса кислорода.

$$j_{O_2} = \frac{RT}{16F^2L} \overline{t_l(1-t_l)\sigma} \ln \frac{P'_{O_2}}{P'_{O_2}}$$
(1),

где F – постоянная Фарадея, R – универсальная газовая постоянная.

Рис. 8. Зависимости потока кислорода (j_{O_2}) через композиты (а) $ZrV_2O_7 - 20$ мас.% V_2O_5 с ЖЗГС и (б) $ZrV_2O_7 - 28$ мас.% V_2O_5 с ЖЗГС от их толщины (L) при различных температурах ($P'_{O_2} = 0,21$ атм, $P''_{O_2} = 0,005$ атм).

Рис. 9. Рентгенограммы (а) исходного керамического композита ZnO - 30 мас.% Bi_2O_3 , спечённого при 710 °С и (б) композита ZnO - 30 мас.% Bi_2O_3 с ЖЗГС, охлажденного от 820 °С.

Система ZnO – Ві2О3. РФА полученных керамических композитов ZnO – 15, 20, 25, 30 мас.% Ві₂О₃ показал, что в процессе спекания на воздухе образуется фаза co $Bi_{38}ZnO_{58}$, структурой силленита которая находится в равновесии с ZnO, что согласуется фазовой С диаграммой системы Bi₂O₃ - ZnO (рис. 1 б). При этом фазовый состав исходных керамических композитов, спечённых при 710 °С, и композитов с ЖЗГС после измерения проницаемости

по кислороду в интервале температур 760-820 °С в течение 8 часов, а затем охлажденных до комнатной температуры, практически не отличается (рис. 9). Однако соотношение интенсивностей пиков ZnO на рентгенограммах (а) и (б) меняется, что, по-видимому, связано с текстурированием образцов.

Рис. 10. Микроструктура (a) композита ZnO – 20 мас.% Bi₂O₃ с ЖЗГС, охлажденного от 820 °С, и (б) данные локального химического анализа для этого же композита.

представлена микроструктура композита ZnO – 20 мас.% Bi₂O₃ с ЖЗГС, охлажденного от 820 °C. На микрофотографии наблюдаются две структурные составляющие: тёмная и светлая, локализованная на тройных стыках и ГЗ. В соответствии с данными РФА (рис. 9 б) и локального химического анализа (рис. 10 б), темная структурная составляющая соответствует ZnO, а светлая – смеси фаз ZnO и Bi₃₈ZnO₅₈, что согласуется с фазовой диаграммой системы Bi₂O₃ -ZnO (рис. 1 б).

Рис. Температурные 11. зависимости электропроводности (о) композитов ZnO-15, 20, 25, 30 мас.% Ві₂О₃, фаз Ві₂О₃ и ZnO.

ионной

полиморфным

повышением

Температурные зависимости электропроводности композитов ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ 11. представлены на Для рис. сравнения приведены электропроводности чистых ZnO и Bi₂O₃. В исследуемом интервале температур проводимость чистого ZnO имеет слабый термоактивационный характер И изменяется незначительно, в то время проводимость оксида висмута как меняется существенно, претерпевая при 730 °С скачок, обусловленный превращением α -Bi₂O₃ \rightarrow δ -Bi₂O₃, который сопровождается проводимости Ha по кислороду. кривых электропроводности композитов ZnO – 15, 20, 25, 30 мас. % Bi₂O₃ наблюдается

Формирование ЖЗГС

наблюдается в керамических композитах ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ при температуре плавления (738 °C) эвтектики В результате смачивания ГЗ ZnO расплавом. На рис. 10 а скачок при 740 °C, который обусловлен плавлением эвтектики и формированием ЖЗГС. Кажущаяся энергия активации составляет ~ 1,3 эВ в интервале 770 – 800 °C.

Рис. 12. Зависимости числа переноса ионов кислорода (t_i) в ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС от (а) температуры и (б) объемной доли жидкой фазы (η_w).

Зависимости числа переноса ионов кислорода в композитах ZnO – 15, 20, 25, 30 мас.% Bi_2O_3 с ЖЗГС от температуры и от объемной доли жидкой фазы представлены на рис. 12. С повышением температуры и увеличением содержания Bi_2O_3 число переноса ионов кислорода в этих композитах возрастает от 0,15 до 0,35. В соответствии с диаграммой состояния системы ZnO – Bi_2O_3 (рис. 1 б), с ростом содержания Bi_2O_3 возрастает объемная доля жидкой фазы, которая проводит ионы кислорода. Число переноса ионов кислорода. 12 б).

Рис. 13. Зависимости потока кислорода (j_{O_2}) через композиты ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС (L = 2 мм) от (а) разности парциальных давлений кислорода $(lg \frac{P'_{O_2}}{P''_{O_2}})$ при 800 °С и (б) объемной доли жидкой фазы в композитах $(\eta_{\mathfrak{m}}) (lg \frac{P'_{O_2}}{P''_{O_2}} = 1, 6)$.

На рис. 13 представлены зависимости потока кислорода через композиты ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС от разности парциальных давлений кислорода при 760 – 820 °C. Поток кислорода возрастает с увеличением содержания Bi₂O₃ (или объемной доли жидкой фазы), разности парциальных давлений кислорода и температуры.

Рис. 14. Зависимости потока кислорода (j_{0_2}) через композиты (a) ZnO – 20 мас.% Bi₂O₃ с ЖЗГС и (б) ZnO – 30 мас.% Bi₂O₃ с ЖЗГС от толщины мембраны (*L*) при различных температурах ($lg \frac{P'_{0_2}}{P'_{0_2}} = 1,3$).

На рис. 14 представлены экспериментальные зависимости потока кислорода от толщины композитов (a) ZnO - 20 мас.% Bi_2O_3 с ЖЗГС и (б) ZnO- 30 мас.% Bi₂O₃ с ЖЗГС при различных температурах. С уменьшением композитов поток кислорода возрастает. Зависимости носят толшины линейный хорошо описываются уравнением Вагнера характер И (1). Следовательно, процесс переноса кислорода через ЭТИ композиты осуществляется в диффузионном режиме. Сопряженная диффузия ионов кислорода и электронов контролирует скорость процесса. Принимая во внимание тот факт, что $t_i < 0.5$ для композитов ZnO – 15, 20, 25, 30 мас.% Bi₂O₃ с ЖЗГС (рис. 12), можно сделать вывод, что скорость процесса лимитируется диффузией ионов кислорода по жидким каналам.

Система NiO – Bi₂O₃ и In₂O₃ – Bi₂O₃. РФА спеченных при 800 °C керамических композитов NiO – 30, 36, 42, 48 мас.% Bi₂O₃ и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ показал, что наряду с оксидами металлов NiO или In₂O₃ присутствует метастабильная фаза γ -Bi₂O₃. Это объясняется тем, что при

нагревании композитов до температуры спекания (800 °C) происходит полиморфное превращение α-Bi₂O₃ → δ-Bi₂O₃ при 730 °C. Впоследствии, при медленном охлаждении композитов (~ 1 град/мин) происходит обратное превращение δ-Bi₂O₃, но в метастабильную кубическую γ-Bi₂O₃, которая при медленном охлаждении может существовать до комнатной температуры. Так, на рентгенограмме композита NiO – 48 мас.% Bi₂O₃ (рис. 15 а) помимо пиков NiO (JCPDS № 47-1049) присутствуют пики γ-Bi₂O₃ (JCPDS № 45-1344). При этом рентгенограммы (а) исходного спеченного керамического композита и (в) композита с ЖЗГС, охлажденного от 850 °C, практически не отличаются. Аналогичная ситуация наблюдается и для композитов In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃, спеченного при 800 °C, и (г) композита In₂O₃ – 48 мас.% Bi₂O₃ и In₂O₃ с ЖЗГС, охлажденного от 850 °C, подтверждающие присутствие γ-Bi₂O₃ и In₂O₃ (JCPDS № 44-1087).

Рис. 15. Рентгенограммы (а, б) исходных керамических композитов NiO – 48 мас.% Bi_2O_3 и $In_2O_3 - 48$ мас.% Bi_2O_3 , спечённых при 800 °С, и (в, г) композитов NiO – 48 мас.% Bi_2O_3 и $In_2O_3 - 48$ мас.% Bi_2O_3 с ЖЗГС, охлажденных от 850 °С.

Микроструктуры композитов NiO – 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ – 48 мас.% Bi₂O₃ с ЖЗГС, охлажденных от 850 °С, представлены на рис. 16 а и рис. 16 в. На микрофотографиях наблюдаются две структурные составляющие – темная

Рис. 17. Температурные зависимости электропроводности (σ) композитов (a) NiO – 30, 36, 42, 48 мас.% Bi₂O₃, (б) In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃, фаз NiO, In₂O₃ и Bi₂O₃.

Температурные зависимости электропроводности композитов NiO – 30, 36, 42, 48 мас.% Bi_2O_3 и $In_2O_3 - 30$, 36, 42, 48 мас.% Bi_2O_3 представлены на рис. 17. Для сравнения приведены температурные зависимости электропроводности чистых NiO, In_2O_3 и Bi_2O_3 . Кривые электропроводности композитов NiO – 30, 36, 42, 48 мас.% Bi_2O_3 и $In_2O_3 - 30$, 36, 42, 48 мас.% Bi_2O_3 можно разбить на два участка – участок I от 600 до 730 °C, где проводимость возрастает с ростом температуры и уменьшается с увеличением содержания в них оксида висмута, и участок II, где проводимость возрастает как с ростом температуры, так с увеличением содержания оксида висмута (рис. 17). При 730 °С проводимость композитов возрастает приблизительно на два порядка величины, что связано с полиморфным превращением α -Bi₂O₃ \rightarrow δ -Bi₂O₃. ЖЗГС формируется при температуре плавления эвтектики 810 °С (для композитов NiO – Bi₂O₃, рис. 1 в) и 820 °С (для композитов In₂O₃ – Bi₂O₃, рис. 1 г). Формирование ЖЗГС оказывает незначительное влияние на электропроводность этих композитов. ЧТО объясняется высокой структурной разупорядоченностью δ-Bi₂O₃, которая близка к расплавленному состоянию. При этом кажущаяся энергия активации проводимости для композитов NiO – 30, 36, 42, 48 мас. % Bi₂O₃ с %3ГС и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС в интервале 750 – 900 °С составляет 0,41 эВ и 0,62 эВ, соответственно.

Температурные зависимости числа переноса ионов кислорода в композитах NiO – 30, 36, 42, 48 мас.% Bi_2O_3 с ЖЗГС и In_2O_3 – 30, 36, 42, 48

Рис. 18. Зависимость числа переноса ионов кислорода (t_i) в композитах NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС от (а, в) температуры и (б, г) объемной доли жидкой фазы (η_w).

мас.% Bi₂O₃ ЖЗГС с представлены на рис. 18 а и рис. 18 в. С повышением температуры и увеличением доли Bi_2O_3 B композитах переноса число ИОНОВ кислорода возрастает от 0,55 до 0,7 и от 0,52 до 0,6, соответственно. Рост числа переноса ионов кислорода возрастанием связан с объемной доли жидкой фазы (рис. 18 б и рис. 18 г), которая проводит ИОНЫ кислорода.

Рис. 19. Зависимости потока кислорода (j_{O_2}) через композиты (a) NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и (б) In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС от разности парциальных давлений кислорода $(lg \frac{P'_{O_2}}{P''_{O_2}})$ при 850 °C ($L \approx 2,5$ мм), а также (в) от объемной доли жидкой фазы в этих композитах ($\eta_{_{\mathcal{H}}}$) ($lg \frac{P'_{O_2}}{P''_{O_2}} = 1$).

На рис. 19 представлены зависимости потока кислорода (j_{O_2}) через композиты (a) NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и (б) In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС от разности парциальных давлений кислорода, измеренные при 850 °C ($L \approx 2,5$ мм). Поток кислорода возрастает с увеличением разности парциальных давлений кислорода и объемной доли жидкой фазы (η_{∞}) в композитах (рис. 19 в).

Таблица 1. Экспериментально полученные j_{O_2} (эксп.) и теоретически рассчитанные j_{O_2} (теор.) потоки кислорода через композиты NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС и In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС ($lg \frac{P'_{O_2}}{P''_{O_2}} = 1$).

Состав мембраны	<i>jo</i> ₂ (эксп.), моль·см ⁻² ·с ⁻¹	<i>jo</i> ₂ (теор.), моль·см ⁻² ·с ⁻¹
NiO - 30 mac.% Bi ₂ O ₃	3,2·10 ⁻⁸	3,9·10 ⁻⁸
NiO - 36 Mac.% Bi ₂ O ₃	3,6.10-8	4,6·10 ⁻⁸
NiO - 42 Mac.% Bi ₂ O ₃	4·10 ⁻⁸	5,3·10 ⁻⁸
NiO - 48 mac.% Bi ₂ O ₃	4,4·10 ⁻⁸	5,8·10 ⁻⁸
In2O3 - 30 Mac.% Bi2O3	7,3 ·10 ⁻⁸	6,1·10 ⁻⁸
In2O3 - 36 Mac.% Bi2O3	7,8·10 ⁻⁸	7,7·10 ⁻⁸
In2O3 - 42 Mac.% Bi2O3	8,7·10 ⁻⁸	9,5·10 ⁻⁸
In2O3 - 50 Mac.% Bi2O3	9,5·10 ⁻⁸	1,1·10 ⁻⁷

В Табл. 1 представлены экспериментально полученные j_{0_2} (эксп.) и теоретически рассчитанные j_{0_2} (теор.) (1)формуле Вагнера потоки по кислорода через композиты NiO – Bi₂O₃ ЖЗГС и In₂O₃ – Bi₂O₃ с ЖЗГС. С Сравнительный анализ показывает, что значения этих потоков одного порядка величины. Это свидетельствует 0

диффузионном контроле процесса переноса кислорода через эти композиты. Учитывая, что число переноса ионов кислорода $t_i > 0,5$ как для композитов NiO – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС, так и для композитов In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с ЖЗГС (рис. 18), можно сделать вывод, что скорость переноса кислорода через эти композиты лимитируется электронной проводимостью.

Материал	T, ℃	П, моль·см ⁻¹ ·с ⁻¹
(Bi ₂ O ₃) _{0.75} (Er ₂ O ₃) _{0.25} – Ад (кермет)	680	1,8·10 ⁻⁹
ZnO – 30 мас.% Ві2О3 (ЖЗГС)	800	2,1·10 ⁻⁹
Ва _{0.5} Sr _{0.5} Zn _{0.2} Fe _{0.8} O _{3-δ} (керамика)	800	5,2·10 ⁻⁸
La _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.2} O _{3-δ} (керамика)	850	1,8·10 ⁻⁹
NiO – 48 мас.% Ві2О3 (ЖЗГС)	850	4,4·10 ⁻⁹
In2O3 – 48 мас.% Ві2O3 (ЖЗГС)	850	1,1·10 ⁻⁸
SrCo _{0.8} Fe _{0.2} O _{3-б} (керамика)	870	4,7.10-8

Таблица 2. Коэффициент проницаемости кислорода (П) для некоторых мембранных материалов.

В Табл. 2 для сравнения приведены значения коэффициента проницаемости кислорода (П) как для исследованных композитов с ЖЗГС, так и для современных мембранных материалов. Сравнительный анализ показывает, что значения

П для традиционно применяемых мембранных материалов и для композитов с ЖЗГС одного порядка величины. Следовательно, композиты с ЖЗГС могут быть применены в качестве ИТМ для выделения кислорода из воздуха.

выводы

1. Впервые получены композиты $ZrV_2O_7 - 16$, 20, 24, 28 мас.% V_2O_5 ; ZnO – 15, 20, 25, 30 мас.% Bi₂O₃; NiO – 30, 36, 42, 48 мас.% Bi₂O₃; In₂O₃ – 30, 36, 42, 48 мас.% Bi₂O₃ с жидкоканальной зернограничной структурой, обладающие высокой селективной проницаемостью по кислороду 3,1·10⁻⁹ – 1,6·10⁻⁸ моль·см⁻²·с⁻¹ при 680 – 740 °C; 7,2·10⁻⁹ – 4,8·10⁻⁸ моль·см⁻²·с⁻¹ при 760 – 820 °C; 2,8·10⁻⁸ – 5,4·10⁻⁸ моль·см⁻²·с⁻¹ при 850 °C; 5,9·10⁻⁸ – 9,6·10⁻⁸ моль·см⁻²·с⁻¹ при 850 °C, соответственно.

2. Установлено, что процесс переноса кислорода через эти композиты (в исследуемом интервале толщин 1,1 – 5,4 мм) осуществляется в диффузионном режиме. Сопряженная диффузия ионов кислорода и электронов контролирует скорость процесса.

3. Установлена взаимосвязь состав – микроструктура – транспортные свойства композитов. Показано, что проницаемость по кислороду возрастает с ростом объемной доли жидкой фазы.

4. Установлены зависимости электропроводности, числа переноса ионов кислорода и проницаемости по кислороду композитов в зависимости от температуры, парциального давления кислорода и объемной доли жидкой фазы.

5. Показано, что композиты NiO – 48 мас.% Bi_2O_3 и $In_2O_3 - 48$ мас.% Bi_2O_3 имеют максимальный коэффициент проницаемости по кислороду 4,4·10⁻⁹ моль·см⁻¹·с⁻¹ и 1,1·10⁻⁸ моль·см⁻¹·с⁻¹ при 850 °C, соответственно, что позволяет использовать их в качестве ионно-транспортных мембран для выделения кислорода из воздуха.

Список используемой литературы:

1. Funke K. Solid State Ionics: from Michael Faraday to green energy – the European dimension // *Science and Technology of Advance Materials*, 2013. V. 14. 50 pp.

2. Sunarso J., Baumann S., Serra J.M., Meulenberg W.A., Liu S., Lin Y.S., Diniz da Costa J.C. Mixed ionic-electronic conducting ceramic-based membranes for oxygen separation // *Journal of Membrane Science*, 2008. V. 320. P. 13-41.

3. Kniep J., Lin J.Y.S. Oxygen- and hydrogen-permeable dense ceramic membranes. In: Kharton V.V. (Ed.) Solid state electrochemistry II: electrodes, interfaces and ceramic membranes. Wiley-VCH, Weinheim, 2011. P. 467-500.

4. Федоров С.В. Транспортные свойства композитов BiVO₄ – V₂O₅ с жидкоканальной зернограничной структурой // Диссертация кандидата химических наук, 2010. 107 с.

5. Belousov V.V., Fedorov S.V., Vorobiev A.V. The oxygen permeation of solid/melt composite $BiVO_4 - 10$ wt.% V_2O_5 membrane // *Journal of Electrochemical Society*, 2011. V. 158. P. B601-B604.

6. Лысков Н.В. Синтез, свойства и применение керамических оксидных композитных материалов со смешанной проводимостью в системе ZrO₂ – Bi₂CuO₄ – Bi₂O₃ // Диссертация кандидата химических наук, 2006. 142 с.

7. Белоусов В.В., Федоров С.В. Ускоренный массоперенос с участием жидкой фазы в твердых телах // *Успехи химии*, 2012. Т. 81. № 1. С. 44-64.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Kulbakin I., Belousov V., Fedorov S., Vorobiev A. Solid/melt ZnO – Bi_2O_3 composites as ion transport membranes for oxygen separation from air // *Materials Letters*, 2012. V. 67. P. 139-141.

2. Belousov V.V., Schelkunov V.A., Fedorov S.V., **Kulbakin I.V.**, Vorobiev A.V. Oxygen-permeable $In_2O_3 - 55$ wt.% δ -Bi₂O₃ composite membrane // *Electrochemical Communications*, 2012. V. 20. P. 60-62.

3. Belousov V.V., Schelkunov V.A., Fedorov S.V., **Kulbakin I.V.**, Vorobiev A.V. Oxygen-permeable NiO – 54 wt.% δ -Bi₂O₃ composite membrane // *Ionics*, 2012. V. 18. P. 787-790.

4. **Кульбакин И.В.**, Федоров С.В., Воробьев А.В., Белоусов В.В. Транспортные свойства композитов ZrV₂O₇ − V₂O₅ с жидкоканальной зернограничной структурой // Электрохимия, 2013. Т. 49. №.9. С. 982-986.

5. **Кульбакин И.В.** Транспортные свойства композитов ZnO – Bi₂O₃ с жидкоканальной зернограничной структурой // Сборник материалов VII Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 8-11 ноября 2010 г., Москва. С. 243.

6. **Kulbakin I.V.**, Fedorov S.V., Belousov V.V., Vorobiev A.V. Transport properties of $ZrV_2O_7 - V_2O_5$ liquid-channel grain-boundary structures // In Book of Abstracts of 10th International Conference on Catalysis in Membrane Reactors, June, 20-24, St. Petersburg, 2011. P. 248-249.

7. **Кульбакин И.В.** Ионно-транспортные мембраны ZrV₂O₇ – V₂O₅ с жидкоканальной зернограничной структурой // Сборник материалов VIII Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 15-18 ноября 2011 г., Москва. С. 74.

8. **Kulbakin I.**, Fedorov S., Vorobiev A., Belousov V. Solid/melt $ZrV_2O_7 - V_2O_5$ composites as ion transport membranes for oxygen separation from air // In Book of abstracts of 10th International Symposium "Systems with Fast Ionic Transport", July, 1-4, Chernogolovka, 2012. P. 63.

9. **Кульбакин И.В.**, Федоров С.В., Воробьев А.В., Белоусов В.В. Транспортные свойства композитов ZnO – Bi₂O₃ с жидкоканальной зернограничной структурой // Сборник трудов 11-го Международного совещания «Фундаментальные проблемы ионики твердого тела», 5-8 июля 2012 г., Московская обл., Черноголовка. С. 287-288.

10. Кульбакин И.В. Композитные мембраны «твердый оксид – оксидный расплав» для выделения кислорода из воздуха // Сборник материалов IX Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 23-26 октября 2012 г., Москва. С. 218.

11. **Кульбакин И.В.**, Федоров С.В. Транспортные свойства композитов NiO – Bi₂O₃ со структурой «твердый оксид – оксидный расплав» // Тезисы докладов VII всероссийской конференции молодых учёных, аспирантов и студентов с международным участием по химии и нанотехнологиям «Менделеев – 2013», секция «Физическая химия», 2-5 апреля 2013 г., Санкт-Петербург. С. 171.

12. Кульбакин И.В., Федоров С.В., Белоусов В.В. Композитные ионнотранспортные мембраны с жидкоканальной зернограничной структурой для выделения кислорода из воздуха // Материалы докладов XVI Российской конференции с международным участием «Физическая химия и электрохимия расплавленных и твердых электролитов», 16-20 сентября 2013 г., Екатеринбург. Т. II. С. 261-262.

13. Кульбакин И.В. Исследование проницаемости по кислороду композитных ионно-транспортных мембран «твердый оксид металла – оксидный расплав на основе Bi₂O₃» // Сборник материалов Х Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 22-25 октября 2013 г., Москва. С. 183-184.

Благодарности

Автор работы выражает глубокую и искреннюю благодарность своему научному руководителю и учителю д.ф.-м.н. В.В. Белоусову. Автор выражает признательность коллективу лаборатории №31 функциональной керамики ИМЕТ РАН и лично к.х.н. А.В. Воробьеву, а также к.х.н. А.А. Климашину за помощь в обсуждении результатов. Особую благодарность автор выражает к.х.н. С.В. Федорову за помощь в проведении экспериментов, а также за помощь в оформлении диссертационной работы.

Автор выражает благодарность к.т.н. И.Ю. Сапронову за проведение материалографической подготовки образцов, а также к.т.н. Е.В. Шелехову за проведение рентгенографических исследований. Автор благодарен коллективу лаборатории № 33 физико-химического анализа керамических материалов ИМЕТ РАН, а именно д.х.н. Ю.Ф. Каргину и к.г.-м.н. С.Н. Ивичевой за полезные советы и ценные замечания по содержанию и оформлению работы. Благодарность автор также выражает всем близким и родным за поддержку.